## 4.9.5 Effective thickness

The effective thickness  $t_{\rm ef}$  parameters for walls and columns are illustrated in Figure 2 of BS 5628. They are basically divided into two categories in relation to whether stiffening piers or intersecting walls are present or not.

Category 1 walls and columns not stiffened by piers or intersecting walls



(a) Columns as shown in Figure 4.11:  $t_{ef} = t$  or b depending in which

direction the slenderness is being considered.

- (b) Single leaf walls as shown in Figure 4.12:  $t_{\rm ef}$  = the actual thickness t.
- (c) Cavity walls as shown in Figure 4.13:  $t_{ef}$  = the greatest of  $2(t_1 + t_2)/3$  or  $t_1$  or  $t_2$ .

Figure 4.11 Plan on a column



Figure 4.12 Plan on a single leaf wall



Figure 4.13 Plan on a cavity wall

Category 2: walls stiffened by piers or intersecting walls

- (a) Single leaf wall with piers shown in Figure 4.14:  $t_{\rm ef} = tK$ , where K is the appropriate stiffness coefficient from BS 5628 Table 5, reproduced here as Table 4.7.
- (b) Cavity wall with piers as shown in Figure 4.15:  $t_{\rm ef}$  = the greatest of  $2(t_1 + Kt_2)/3$  or  $t_1$  or  $Kt_2$ , where K is again the appropriate stiffness coefficient from Table 4.7.

For the purpose of category 2 an intersecting wall may be assumed to be equivalent to a pier with the dimensions shown in Figure 4.16.



Figure 4.14 Plan on a single leaf wall with piers

| Ratio of pier spacing<br>(centre to centre)<br>to pier width | Ratio $t_p/t$ of pier thickness to actual thickness of wall to which it is bonded |     |     |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|
|                                                              | 1                                                                                 | 2   | 3   |
| 6                                                            | 1.0                                                                               | 1.4 | 2.0 |
| 10                                                           | 1.0                                                                               | 1.2 | 1.4 |
| 20                                                           | 1.0                                                                               | 1.0 | 1.0 |

Table 4.7 Stiffness coefficient for walls stiffened by piers (BS 5628 Part 1 1978 Table 5)

Note: Linear interpolation between the values given in table is permissible, but not extrapolation outside the limits given.



Figure 4.15 Plan on a cavity wall with piers



Figure 4.16 Plan on an intersecting wall considered as an equivalent pier

## 4.9.6 Capacity reduction factor for slenderness

As stated earlier, the slenderness ratio is a measure of the tendency of a wall or column to fail by buckling before crushing. To take this into account, the design strength of a wall or column is reduced using a capa-